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Tensile creep behavior and the elevated temperature fatigue o f fiber reinforced ceramic 

composites were investigated using Monte Carlo simulation. The simulated model 

consisted of a uniaxially loaded tow o f unidirectional fibers aligned parallel to the load. 

The simulation generated a Weibull distribution o f fiber strengths, and Gaussian 

distributions o f fiber modulus and radius. The simulation assumed a creep strain rate 

consisting o f primary and steady state components each o f which was modeled by a 

power law relationship. Power law exponents in the range o f 0-7 for a selected SiC/SiC 

system at stress levels ranging from 60 MPa to 200 MPa were evaluated. A fatigue 

exponent of 3.03 ± 0.066 was predicted for nominal stress levels less than 150 GPa. The 

influence of initial crack length on the failure lifetime was also studied. A comparison of 

the predicted failure response and literature data suggested a stress dependent creep 

process could be used to model experimental data and possibly evaluate the failure 

mechanism o f reinforced test items. Average magnitude and standard deviation of fiber 

characteristics were varied in the simulation while keeping the creep model constant.

Low values o f fiber radius seemed to increase the lifetime while higher values had little 

impact on the failure lifetime. Increased fracture toughness increased the lifetime o f the 

composite for moderate values but had little effect for higher values o f fracture 

toughness. Both characteristic strength and the Weibull modulus o f the fibers were 

predicted to have significant effect on the creep life o f the fiber tow. An increase in either 

the characteristic strength or Weibull modulus was predicted to result in an increase in 

creep life with the former having more influence than the latter. Minimizing the spread in 

the values o f the elastic modus of the fibers may lead to an increased lifetime of the fiber 

tow.
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PREFACE

An investigation into the creep crack growth behavior o f ceramic composites has been 

completed. This investigation employed a microstructural model to simulate damage 

growth in a fiber-reinforced ceramic induced by static loads at elevated temperatures to 

assess the life o f a fiber tow. The material model correlated well with the experimental 

data as proof o f concept. Next the simulation was used to predict what effects changing 

fiber properties had on tow life.

This investigation was performed by Praveen Sodanapalli in partial requirements 

for the degree o f Master o f Science. The investigation was undertaken at he University o f 

Wyoming under the direction o f Dr. Dennis N. Coon, Professor of Mechanical 

Engineering.
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Section I 

Theoretical Background

The resistance o f brittle materials to tensile failure can be enhanced considerably 

by reinforcement with high strength fibers. The most dramatic improvements in 

properties have been achieved in composites that contain continuous, weakly bonded 

fibers aligned parallel to the tensile axis. The use o f fibrous reinforced ceramic materials 

instead o f monolithic ceramics in engineering structures allows higher mechanical and 

thermal performances, and weight reduction. This class o f composites includes glasses, 

glass-ceramics, and ceramics reinforced by carbon and SiC fibers. Mechanisms o f failure 

in these composites and in monolithic ceramics can differ substantially. Monolithic 

ceramics generally fail by the growth o f a single crack on a plane normal to maximum 

principal stress. Fiber composites, on the other hand, can fail by a variety o f mechanisms, 

dependent upon the applied stress state and the geometry and the microstructural 

characteristics o f the composite. The micro-mechanisms that lead to improved fracture 

resistance in ceramic composites include microcrack toughening, transformation 

toughening, ductile phase toughening, fiber toughening and whisker toughening. 

Although the formation o f cracks in a material is generally considered deleterious, 

microcracking can some times lead to improved toughness. The formation o f microcracks 

releases strain energy from the sample, which results in toughening o f the material. Many 

toughened ceramics contain second-phase particles that are capable o f nonlinear 

deformation, and are primarily responsible for the elevated toughness. One of the most 

effective toughening mechanisms in ceramic composites is the fiber bridging mechanism 

[9]-

Figure 1 illustrates the fiber bridging mechanism, when a propagating crack 

leaves fibers or second-phase particles intact. Once the matrix has cracked, the load is 

carried by the fibers. The fibers do not fail simultaneously because the fiber strength is 

subject to statistical variability. Consequently, the material exhibits quasi-ductility where 

damage accumulates gradually until final failure. Not only is fiber bridging the most 

effective toughening mechanism for ceramics, it is also effective at high temperatures 

[28]. Consequently applications requiring load-bearing capability at temperatures above
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1000 °C would undoubtedly benefit from utilizing fiber-reinforced ceramics exhibiting 

fiber bridging.

CT

Crack

Bridging Fiber JVIatrix phase

Fiber phase

I
cs

Figure 1.1. Fiber bridging mechanism in ceramic composites with a preexisting 

crack in the matrix

Mechanisms that do not involve failure by growth of a single crack have been 

observed. In that case, fracture toughness cannot be defined in the usual sense. Despite 

these complications, fracture mechanics can be applied to analyze failure o f fiber 

composites, provided that the detailed mechanisms o f failure are identified for each 

combination o f the composite stress state. Such analysis provides insight into failure 

processes and allows definition o f alternative material properties, which characterize the 

mechanical response. Furthermore, by relating these properties to microstructural 

parameters, the fracture mechanics analysis provides a means o f designing optimum 

microstructures and anticipating microstructural changes in failure mechanism with 

changes in microstructural properties.
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Section II

Paper I 

“Simulation of Creep Crack Growth in Ceramic Composites”

Praveen Sodanapalli
Mechanical Engineering Department 

University o f Wyoming 
Laramie, WY 82071

Dennis N. Coon
Mechanical Engineering Department 

University o f Wyoming 
Laramie, WY 82071

Abstract

Tensile creep behavior and elevated temperature fatigue o f fiber reinforced ceramic 

composites were investigated using Monte Carlo simulation. The simulated model 

consisted of a uniaxially loaded tow aligned the direction of the load. The simulation 

generated a Weibull distribution of fiber strengths, and Gaussian distributions of fiber 

modulus and radius. The simulation assumed a creep strain rate consisting of primary and 

steady state components each of which was modeled by a power law relationship. Power 

law exponents in the range o f 0-7 for a selected SiC/SiC system at stress levels ranging 

from 60 MPa to 200 MPa were evaluated. A fatigue exponent o f 3.03 ± 0.066 was 

predicted for nominal stress levels less than 150 GPa. The influence o f initial crack 

length on the failure life times was also studied. Predicted failure response suggested a 

stress dependent creep process could be used to model experimental data and possibly 

evaluate the failure mechanism of reinforced test items.

Background

Ceramic matrix composites (CMCs) are candidate structural materials for high 

temperature applications due to their outstanding structural properties such as high
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specific strength, stiffness, and toughness. CMCs are candidates for applications for 

which lifetime at elevated temperature under stress is an important material characteristic. 

Owing to their recent development, however, only limited work has been published on 

the creep behavior o f ceramic composites because experimental investigations o f the 

elevated temperature creep behavior o f fiber reinforced CMCs are costly and time 

consuming. There is a need to understand and predict the creep deformation behavior o f 

CMCs as a function o f basic properties o f the constituents.

The progression o f failure features in fiber-reinforced ceramics has been 

identified for monotonically loaded tensile loaded specimens [1]. Failure initiated with a 

single matrix crack growing in the direction perpendicular to the maximum principal 

stress. The fibers remained intact and bridge the crack in the matrix phase. Further load 

increase resulted in the formation o f additional matrix cracks, and these matrix cracks 

were regularly spaced at about 400 pm in the direction of principal stress. Final failure of 

tension specimens was preceded by fiber pullout and then fiber failure. Growth of 

multiple cracks has also been observed [2], Flexure failure mechanisms have been 

identified as matrix cracks that progress from the tension surface toward the compressive 

surface [2-4]. Final failure was attributed to buckling instability resulting from reduced 

cross section.

The cyclic-fatigue behavior of CMCs at high temperatures is not well understood. 

Elements such as environmental factors, creep o f constituents, thermally induced stresses 

at interfaces, and interfacial sliding resistance can cause the reduction o f fatigue life at 

high temperatures [5-7]. If the operating temperature is lower than that for the onset of 

creep of the fibers and the matrix, the decrease of sliding resistance due to relaxation of 

the residual stress is attributed to be the dominant fatigue mechanism [7]. When the 

temperature is high enough to produce strength degradation o f fibers such as creep, the 

failure becomes complicated and is a priority for further research. Fatigue and creep 

damage mechanisms can operate simultaneously under high temperature cyclic loading 

Fatigue loading at high temperatures resulted in creep fatigue interactions which caused a 

reduction in the number o f cycles to failure.

Limited lifetimes have been observed experimentally in ceramic composites at 

high temperatures [8-13], and several degradation mechanisms have been identified

4
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including creep, fiber/environment reaction, and wear o f the fiber surfaces during cyclic 

loading. Creep has been identified as the predominant damage mechanism for fatigue at 

elevated temperatures [1-3,11,13,14]. Holmes investigated the elevated temperature 

fatigue response and modeled the creep strain rate using a power law, which is similar to 

the strain ratcheting law used in fatigue failures [15].

The purpose o f the present paper is to discuss the results obtained from a Monte 

Carlo simulation o f the tensile creep behavior o f a unidirectional SiC/ SiC ceramic 

composite.

Monte Carlo Simulation

Monte Carlo simulation is the numerical solution o f analytical models containing 

probabilistic characteristics. In Monte Carlo simulation, a computer performs the 

calculations o f system behavior following well-defined mathematical relationships 

involving these probabilistic characteristics. In this manner, the solution is determined in 

part by mathematical relationships, and in part by the values o f the various probabilistic 

characteristics. The validity of the numerical solution is determined by the 

appropriateness o f the mathematical relationships and the probabilistic characteristics. 

Random number generators, often pseudo-random number generators, are used to 

determine the probabilistic characteristics. While any single solution will vary as the 

values o f the probabilistic characteristics vary, performing the numerical solution many 

times can give insight into the behavior o f the physical system. An analytical solution 

using variational calculus is an alternate approach to the solution to this class of 

problems. However, a Monte Carlo approach allows the unique individual responses to 

be observed while providing the average behavior o f the analytical solution. This 

advantage makes M onte Carlo approaches very valuable.

The study o f fiber and composite material fracture is reviewed and analyzed using 

statistical and probabilistic concepts. The justification for the use o f statistical methods in 

the study of the brittle structures is well known [3,4,16-19]. The results obtained from 

strength tests, using identical specimens and identical laboratory conditions, are often

5
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observed to greatly vary about the mean value. The reason for the scatter observed in the 

strength o f brittle materials is the inherent variability in the shape, size, orientation and 

the nature o f molecular, microscopic and macroscopic defects, which are always present 

in all these materials. The distribution and density o f the defect population within the 

specimen is likely to influence the type o f statistical function describing the strength 

behavior.

A crucial task in the application of the Monte Carlo method is the generation of 

the appropriate random samples. In the computational practice of Monte Carlo methods, 

the required random numbers and random vectors are actually generated by the computer 

in a deterministic subroutine. In this case o f deterministic generation, we speak of 

pseudo-random number and pseudo-random vectors. The statistics toolbox of the 

MATLAB™ was used to generate random number sets. Monte Carlo variables 

developed by the current simulation included fiber radii, fiber strength, fiber moduli, and 

force distribution exponents o f individual fiber. The statistical parameters were user 

defined.

The success o f a Monte Carlo calculation depends not only on the appropriateness 

o f the underlying stochastic model but also, to a large extent, on how well the random 

numbers used in the computation simulate the random variables in the model. Chi- 

Square and Kolmogorov-Smimov tests were used to check the randomness and the 

compatibility o f these generated variable sets [20].

Modeling Analysis

The Monte Carlo model described in this communication simulated quasi-static 

crack growth due to creep o f  fibers in a rectangular tow that was loaded externally in 

tension. It was assumed that the fibers were uniformly positioned in a matrix. The 

sequence o f steps used to simulate the above system is described in the following 

sections.

6
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Fiber Tow

The material was assumed to be a rectangular fiber tow that consisted o f 

unidirectional fibers impregnated in the matrix uniformly in 12 rows and 41 columns.

The fibers were aligned in the direction o f applied stress.

Matrix cracking originated from preexisting flaws, typified by a crack in the 

matrix with intact bridging fibers over its entire surface. The length o f the existing crack 

was user defined in the current simulation and was set at 5 % o f the tow length. This 

crack length would result in immediate failure o f the monolithic material, but resulted in 

a stable crack in the composite material under lower levels o f applied stress. The crack 

was assumed to run perpendicular to the applied stress. Crack stability was determined 

using the concepts o f linear elastic fracture mechanics [21]. The applied stress intensity 

factor, K/, was compared with the critical stress intensity factor K/c. If  K/c was greater 

than K/, the crack was stable. Otherwise the crack was extended to the next fiber column 

and checked for stability. This process o f crack growth increased the number o f bridging 

fibers by one entire column of fibers, and was repeated until crack stability was achieved.

Load Distribution

External load was distributed to the individual fibers using an isostrain 

assumption. This approach assumed that the individual fibers and the matrix were in a 

state o f uniform strain while they could be experiencing non-uniform stresses.

The matrix that was in front o f the crack tip was assumed to carry mechanical 

load that was o f the same magnitude as the load carried by the fiber. This assumption was 

justified since both the matrix and the fiber modeled in this study were silicon carbide. In 

this model, the load acting behind the crack tip was carried entirely by the bridging 

fibers. This load distribution was justified since bridging fibers are observed to take most 

o f the load behind the crack tip [21]. The stress in the individual fibers (a  fibcr) was 

calculated from the applied stress (crappiied):

7
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_  ®  applied
C T fiber y  (1)

V f

where V f = the fiber volume fraction.

Equationl determined the load carried by fibers behind the crack tip. Since both 

fibers and the matrix were assumed to take the load in front o f the crack tip, the load 

taken by the fibers in front o f the crack tip was a  fiber and strain in the fiber array (Sfiber) 

was calculated using a simple uniaxial approximation:

G  fiber
£  =fib er  (2)

where E = average modulus of fiber array.

Combining Equations 1 and 2, the strain in the fiber array was determined from:

  ^  applied _
£  fib er~  y  ~  (3)

where s y = strain in fiber i,j

i = horizontal position o f fiber in the tow 

j = vertical position of fiber in tow.

However, the strain in the fiber can also be expressed as:

£  ■ ■ =   —
l,J 17

i j
(4)

where cry = stress in the fiber i,j.

E jj = modulus of the fiber i,j.
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The stress in fiber j;J can also be calculated from:

G i J
applied

~V

. Y e .  Thj

E J
(5)

Notice that if  all the fibers exhibit the same modulus, Equation 5 condenses to,

=

<Tapplied

V Vf  J
(6)

Equation 6 suggests that all fibers would be under the same stress, and this condition 

corresponds to an iso-stress condition.

The amount of stress carried by bridging fibers was calculated by:

cr jCicractc
bfiber (7)

where S = surface area o f the crack,

a = area o f individual fibers in the bridging zone,

tfcrack = sum of stresses carried by the fibers behind the crack tip.

The applied stress intensity factor Ki was calculated by:

k , = 7<WOr

where a  = aappiied - abnbcr (The applied stress on the tow),

C = the crack length,

1 /9Y = a constant (n for an edge loaded surface crack).

(8)

9
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Creep Strain Rate Modeling

The total creep rate, £ to w , was expressed as the sum o f the primary creep rate,

£ p , and the steady state creep rate, , as in [22]:

(9)

Here the primary creep was determined by the equation [22]:

€ p = A a pt m (10)

where A = stress independent constant, 

a  = stress acting in the fibers, 

t =the time elapsed since the loading, 

p ,m= exponent constants.

Negative values o f m suggest decreasing primary creep rate with time.

Steady state creep strain rate was modeled as a power law [22]:

where a  = stress in the fibers, 

n= stress exponent,

B= a constant.

The physical effect of creep was modeled using an assumption of constant volume to 

result in a reduction in cross-sectional area [3]:

=  B a n d o

new
(12)

where A"jW = cross sectional area o f the fiber i,j after creep,

10
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Afjev= Cross sectional area o f the fiber i,j prior to creep.

The stress in the individual fibers after creep was then calculated from:

where crf"v = stress in fiber i j  after creep.

Rules for Stress Redistribution

In this simulation, an inverse power law rule was used to model the distribution of 

force from a broken fiber to other fibers in the array:

where AFi J = force distributed to fiber i, j,

F broken= force from broken fiber that is to be distributed to the 

other fibers,

D ij= distance from fiber i,j to the broken fiber, 

no= force distribution exponent.

Equation 14 can be summed over all fibers in that array to yield:

new
(13)

broken (14)

broken broken (15)

11

R e p ro d u c e d  with p erm iss ion  of th e  copyright ow ner.  F u r the r  reproduction  prohibited without perm iss ion .



www.manaraa.com

Equation 15 indicates that force balance is maintained as a fiber is broken, and that the 

force on that fiber is distributed to the remaining fibers.

Creep Mechanism and Fiber Failure.

The simulation allowed all the fibers to creep under the load, and, consequently 

the radius of the fibers reduced as a result o f creep. Each time fibers were allowed to 

creep was known as a timestep in the simulation. The reduction o f fiber radius in each 

timestep resulted in increased stress on the fiber under a constant load. The stress 

increase was modeled using a constant force assumption [18] and a modification of 

Equation 13:

  new   prevG  — G
' J  i,J

(  prev \
i j

new
V -  ■ v  i ’j  y

(16)

where u  i j  = stress on fiber i, j in the previous iteration step,

- J i v v y
*ij  = radius of fiber i, j in the current iteration step,

T*Prevri j  = radius o f fiber i, j in the previous iteration step.

The stress on the fiber increased until the fiber stress reached the fiber strength. 

At this point the fiber broke. The load on the broken fiber was distributed to the other 

fibers using Equation 14. Then, crack stability was checked, creep was applied to 

individual fibers, and fibers stresses were again compared to fiber strengths. In this way 

the Monte Carlo simulation was iterated until complete failure of fiber array occurred. 

Inherent in the constant force assumption was no redistribution o f forces occurred in the 

fiber array until a fiber broke.

12
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Results

The parameters and the statistical distributions used in the Monte Carlo 

simulation are given in the Table I.

Fiber Characteristic Distribution used Value
Fiber Radius 

Fiber Strength 

Fiber Modulus

Gaussian distribution 

Weibull distribution 

Gaussian distribution

Mean=6.9 micron 
Std=1.3 micron 
M ean=l.l GPa 

m=3.6 
Mean=145 GPa 

Std=30 GPa

Table 2.1. Monte Carlo variables of fiber characteristics used in this study.

Model parameter Value
Initial crack length (a<,) 

Stress Intensity Factor (Kr) 

Applied Stress (o app) 
Fiber Volume (Vf) 

Array Size of the fibers (i X j) 
Stress exponent (n)

5% of tow length 
4.0 MPa.mAl/2 

llOMPa 
40% 

12x41 
2

Table 2.2. Mechanical parameters used in this simulation.

The initial application o f the stress resulted in the pure mechanical failure o f a 

small number o f fibers. This mechanical failure was due to failure o f weaker fibers 

generated from the strength distribution, and was consistent with previous numerical 

studies [23]. The simulation allowed all fibers to creep under load. The fibers in front of 

the crack carry smaller loads than the bridging fibers as some of the load in front o f the 

crack is carried by the matrix phase. Accumulation o f creep strain led to the failure of 

some bridging fibers, which led to the weakening o f the bridging zone. This weakening 

of the bridging zone led to crack growth until the crack stabilized by formation of 

additional bridging fibers. This process was continued until all the fibers were broken.

13
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It appeared that there were three distinct regions in the failure o f a fiber tow: 

crack growth incubation, crack growth, and fiber domination. Crack growth incubation 

was an initial period where small numbers o f failed bridging fibers resulted in crack 

stability in the absence o f the formation o f new bridging fibers by crack growth. The 

crack growth incubation period typically lasted for about 20% of the lifetime o f the tow. 

This phase was followed by the crack growth phase in which the crack propagated 

through the matrix at a fairly constant rate giving way to the fiber domination phase. 

Fiber domination was characterized by complete matrix cracking and a short period of 

rapid fiber failure leading to failure o f the material. The mechanism o f failure is 

illustrated in Figure 2.1. The most important characteristics o f the plot are the crack 

incubation region, the instability point (iteration step where the crack is unstable), crack 

propagation rate, fiber domination point (iteration step where the complete matrix is 

cracked and fibers dominate the system) and lifetime. Each o f the above characteristics 

was studied by varying the standard parameters.

Cracklength Vs timesteps

O)c_aj
oTO
O

Jr—r- 1001

Fiber Domination Region

0.8

Uniform crack growth

0.6

Percentage o f fibers broken
40

Crack instability point

0.2 Crack Incubation Region

o
120 14060 80 100o 20 40

"13
CD-Soa>Pr-f-

CTQct>
O
►n
£.
<tTCu
3a*’a>•-*
CO

timesteps
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Figure 2.1. Crack Length (as a fraction of tow length) and percentage of fibers 

failed as a function of timesteps.

The total number o f time steps indicates the total number o f iteration steps 

completed for the failure o f the whole fiber tow. In this way the number o f timesteps to 

failure gives a relative measure o f the lifetime o f the fiber tow. As shown in Figure 2.1, 

the total number o f timesteps taken for the complete failure o f the fiber was 137. There 

was complete fiber domination beginning at timestep 126. From the Figure 2.1, we can 

observe that 90 % of fibers broke in the last 10 % of lifetime, which agrees well with the 

published data [8-13].

Convergence analysis

The convergence analysis o f the Monte Carlo simulation was determined for up to 

100 independent solutions o f the simulation as shown in the Figure 2.2. This convergence 

analysis showed that the simulation yielded identical values o f the mean and standard 

deviation when the number o f solutions was above 35. Therefore, 50 runs were 

conducted for each variation o f a parameter.
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Figure 2.2. Convergence Analysis of the Monte Carlo simulation described in this 

communication.

Effect of Nominal Stress

The primary motive for this simulation was to examine the effects o f applied load 

on the creep life o f the fiber tow. The simulation was run for stress levels ranging from 

60 MPa to 200 MPa. The plot o f the applied nominal stress versus lifetime is shown in 

Figure 2.3. The plot clearly shows that the lifetime of the fiber tow decreased nonlinearly 

as the nominal stress increased. The mean of 50 simulations at each stress level was 

plotted with the error bars showing the standard deviation.
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Figure 2.3. Plot of applied stress versus the failure lifetime.

Fatigue type behavior is defined as the nonlinear decrease with lifetime with 

increased stress, and is traditionally modeled with the following expression [16]:

f f  =  A ( a nom T n /  (17)
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where t f = lifetime,

A= constant, 

a  nom = nominal stress, 

n f = fatigue exponent.

Transformation o f both the time and stress to a logarithmic scale yields linear behavior as 

shown in the Figure 2.4. Figure 2.4 suggests fatigue type behavior with a fatigue 

exponent of 3.03 ± 0.066. The fatigue exponent obtained from the simulation compares 

very well to the reported value o f 2.92+0.034 [10-11].
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Figure 2.4. Fatigue behavior o f ceram ic fiber tow  predicted using the sim ulation  

described in this communication.

It was observed that there was no crack propagation even in the absence of 

bridging fibers if  the applied stress was less than 68.5 MPa. This lack o f crack
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propagation was due to the Critical effective stress that resulted in crack instability in the 

absence of bridging fibers as given by:

From Equation 18, it can be concluded that if  the applied stresses are below the effective 

critical stress, then there will not be any crack growth in the composite. If all the bridging 

fibers are assumed to be intact, then the critical applied stress to cause the crack growth 

(at a crack length o f 5% of the tow length) is approximately 82.9 MPa. The above results 

are in agreement with the proposition of infinite lifetime for low stresses, and are 

consistent with the literature [18].

Effect of Stress Exponent

The creep strain rate was modeled using a power law [Equation 10-12], The 

influence of the stress exponent (n) on the failure lifetimes o f the fiber tow was studied. 

The stress exponent was varied from 2 to 2.5 and the results are plotted in Figure 2.5.

^ c r t ic a l (18)

where &crlical = Critical effective stress that can make the crack unstable,crtical

K  Ic -  fracture toughness o f the composite,

C= initial crack length.
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Figure 2.5. Influence of the stress exponent on the predicted lifetime

It can be observed from Figure 2.5 that the failure lifetime is very sensitive to the 

changes in the stress exponent. For stress exponent values that are greater than 2.25, fatal 

failure resulting in the fracture o f all the fibers in one or two timesteps was observed. It 

was also observed that the matrix wais not fully cracked in the above cases, and the fiber 

bridging mechanism seem to have been dominated by the creep of the fibers.

Effect of initial crack length

Another important factor considered was the value o f initial crack length and its 

effect on the creep lifetime of the fiber tow. A set o f simulations were run in which the 

initial crack length is varied from 2.5% of tow length to 100 % of tow length (fully 

cracked matrix). Figure 2.6 shows the relationship between initial crack length and 

lifetime. Figure 2.6 shows that there is little functional dependence o f initial crack length 

on lifetime beyond 5% of tow length. This observation shows that the lifetime o f fiber 

tow depends largely on the fibers in a fiber-dominated system rather than on the initial 

crack length.
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Figure 2.6. Effect of initial crack length on the predicted lifetime.

The initial crack length was not stable for lengths less than or equal to 5% o f the fiber 

tow length. Therefore, the crack propagated and reached a specific point irrespective o f 

its initial length. This observation can be explained as follows. From the fracture 

mechanics [24] the following equation can be written:

- i  2

C -  —crtical
71

K lc

^ ® effec tive
(19)

where C crtical = critical crack length below which crack is unstable,

°effective effective stress acting in the fiber bridging zone,

K Ic — fracture toughness o f the composite.

From Equation 19, it may be observed that there is a critical crack length below which 

the crack is unstable for a given state o f stress. This instability leads to crack growth till 

the crack becomes stable by fiber bridging mechanisms. Consequently, the lifetime of the 

fiber tow does not seem to change in the given range o f initial crack length, i.e.
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irrespective o f the initial crack length, the crack stability mechanisms work in such a way 

that the failure times are independent o f the initial crack length. The fiber domination 

point was reached faster as the initial crack length was increased.

To investigate this independence o f crack length further, crack growth rate is 

plotted against initial crack length (Figure 2.7). From Figure 2.7 it appears that the crack 

rate decreased as the initial crack length increased. When the simulation was initiated 

with a large crack length, the bridging zone was large and the crack remained stable for a 

longer time. However this situation soon led to the fiber domination zone, where only 

fiber creep determined lifetime, which explains the observed behavior.

0 20 40 60 80 100 120

Initial Crack Length ( as % of tow length)

Figure 2.7. Crack growth rate as a function of initial crack length.

Conclusions

Tensile creep behavior and the elevated temperature fatigue o f fiber reinforced 

ceramic composites were investigated using a Monte Carlo simulation. The simulated 

model consisted o f a uniaxially loaded tow consisting o f unidirectional fibers aligned in
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the direction o f the load. The simulation assumed a creep strain rate, which can be 

approximated by a power law relationship. Stress (power law) exponents in the range of 

2-2.5 for a selected SiC/SiC system at stress levels ranging from 60 MPa to 200 MPa 

were evaluated. It has been observed that the failure lifetimes o f the composites are 

sensitive to the changes in the stress exponents. A fatigue exponent o f 3.03 ± 0.066 was 

predicted for nominal stress levels less than 150 GPa. The initial crack length was 

predicted to have no effect on the failure life times. It was also observed that there was a 

critical initial crack length below which the crack is unstable. The above observation 

agrees well with fracture mechanics theory. Predicted failure response suggested a stress 

dependent creep process could be used to model experimental data and possibly evaluate 

the failure mechanism of reinforced test items.
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Abstract
Tensile creep behavior and the elevated temperature fatigue o f fiber reinforced 

ceramic composites were investigated using a Monte Carlo simulation. The simulated 

model consisted o f a uniaxially loaded tow aligned the direction of the load. The 

simulation assumed a creep strain rate consisting o f primary and steady state components 

each of which could be approximated by a power law relationship. Average magnitude 

and standard deviation o f fiber characteristics were varied in the simulation while 

keeping the creep model constant. Low values o f fiber radius appeared to increase 

lifetimes while higher values had little impact on the failure lifetimes. An increase in the 

fracture toughness increased the lifetime o f the composite for moderate values but had 

little effect for higher values o f fracture toughness. Both characteristic fiber strength and 

the Weibull modulus were predicted to have significant effect on the creep life o f the 

fiber tow. An increase in either the characteristic strength or W eibull modulus was 

predicted to result in an increase in creep life with the former having more influence than 

the latter. Due to the modeling assumptions, the elastic modulus of fibers was observed to 

have little impact on the creep life o f the fiber tow.
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Background

Ceramic matrix composites (CMCs) are the candidate structural materials for high 

temperature applications due to their outstanding structural properties such as high 

specific strength, stiffness and toughness. Very little is currently known about the 

influence of composite microstructure on creep behavior owing to their recent 

development, thus only limited work has been published on the creep behavior o f ceramic 

composites. Because experimental investigations o f the elevated temperature creep 

behavior of fiber reinforced CMCs are costly and time consuming there is a need to first 

understand and predict the creep deformation behavior o f CMCs as a function of basic 

properties o f the constituents.

Limited lifetimes have been observed experimentally in ceramic composites at 

high temperatures [1-6], and several degradation mechanisms have been identified 

including creep, fiber/environment reaction and wear o f the fiber surfaces during cyclic 

loading. Creep has been identified as the predominant damage mechanism for fatigue 

[4,7-10] at elevated temperatures. Holmes investigated the elevated temperature fatigue 

response and modeled the creep strain rate using a power law, which is similar to the 

strain ratcheting law used in fatigue failures [8].

It has been reported that [9] prediction o f the peak load requires statistical 

analysis o f fiber fracture and pullout. However, fibers aligned with the principal stresses 

direction dictate the properties of a reinforced ceramic [9-11]. This observation implies 

that mechanical performance of fiber-reinforced ceramics can be improved by careful 

consideration of fiber properties and fiber architecture. The purpose of this paper is to 

discuss the effect o f various fiber characteristics on the creep life o f the fiber tow by 

simulating a unidirectional SiC/SiC ceramic composite.

Monte Carlo Simulation

Monte Carlo simulation is the numerical solution to the physical problems 

containing probabilistic characteristics. As compared to analytical solutions, the Monte 

Carlo approach allows the unique individual responses to be observed while providing 

the average behavior o f the analytical solution. The validity o f the numerical solution is
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determined by the appropriateness o f the mathematical relationships and the probabilistic 

characteristics. A crucial task in the application of the Monte Carlo method is the 

generation o f the appropriate random samples. The statistics toolbox of MATLAB™ 

package was used to generate random number sets. Monte Carlo variables developed by 

the current simulation included fiber radii, fiber strength, fiber moduli, and force 

distribution exponents o f individual fiber. The success o f a Monte Carlo calculation 

depends to a large extent, on how well the random numbers used in the computation 

simulate the random variables in the model. Chi-Square and Kolmogorov-Smimov tests 

were used to check the randomness and the compatibility o f these generated variable sets 

[12].

Modeling Analysis

The Monte Carlo model simulated quasi-static crack growth due to creep o f fibers 

in a rectangular tow that is unidirectionally loaded [15]. The material was assumed to be 

a rectangular fiber tow that consisted o f unidirectional fibers impregnated in the matrix 

uniformly in 12 rows and 41 columns. The fibers were aligned in the direction o f applied 

stress.

The model simulates a preexisting crack with intact bridging fibers over its entire 

surface. The crack was set at 5 % of the tow length and it is assumed to run perpendicular 

to the applied stress. Crack growth was determined using the concepts o f Linear Elastic 

Fracture Mechanics [13]. External Load was distributed to the individual fibers using an 

isostrain assumption. In this manner the stiffest fibers preferentially carry the highest 

proportion of the applied force. The matrix that was in front o f the crack tip was assumed 

to carry mechanical load that was of the same magnitude as the load carried by the fiber 

while the load acting behind the crack tip is assumed to be taken entirely by the bridging 

fibers.

The total creep rate, £tow was expressed as the sum of the primary creep rate, £ p , 

and the steady state creep rate, £ s , as [14]:

6  tow =  £ p + £ s (1)
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Here the primary creep was determined by the equation:

(2)

where A = Stress independent constant

a  =The stress acting in the fibers

t =the time elapsed since the loading

p ,m= exponent constants.

Steady state creep strain rate was modeled as a power law [14]:

=  B ct" (3)

where B = constant

n= stress exponent.

The simulation described in this communication allowed all the fibers to creep 

under the load, and, consequently the radius o f the fibers reduced [15]. This led to an 

increased stress on the fiber under a constant load. The stress increase was modeled using 

a constant force assumption [9, 15]. The stress on the fiber increased until the fiber stress 

reached the fiber strength. At this point the fiber broke. An inverse power law rule was 

used to model the distribution of force from a broken fiber to other fibers in the array.

The load on the broken fiber was distributed to the other fibers. Then, the crack stability 

was checked, creep was applied to individual fibers, and fiber stresses were again 

compared to fiber strengths. In this way the Monte Carlo simulation was iterated until the 

complete failure o f fiber array occurs.

The performance o f fiber reinforced ceramic matrix composites can be improved 

by carefully choosing the fiber properties. In this study the effect o f some of these 

properties on the lifetime of the fiber tow were investigated. The distribution o f fiber 

radii was modeled as a Gaussian distribution about a mean o f 6.9 microns and a standard

Results
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deviation of 1.3 microns [16]. The distribution o f fibers strengths was modeled as a 

Weibull distribution with a characteristic strength o f 1.1 GPa and a Weibull parameter of 

3.6 [17]. The distribution o f fiber moduli was modeled as a Gaussian distribution about 

an average o f 145 GPa and a standard deviation o f 30 GPa [17]. The distribution o f force 

distribution exponents was modeled as a uniform distribution with a range o f ± 1 from 

the expected value (uniformly distributed from k-1 to k+1 for a force distribution 

exponent o f k).

Selected simulation parameters were systematically varied to determine their 

influence on the simulated response. Those selected simulation parameters included 

fracture toughness o f the composite, volume fraction o f fiber, characteristic strength of 

the fiber, Weibull modulus for the fiber, and fiber moduli. Fifty runs per simulation were 

run to reduce the uncertainty in the typical results. The mean simulated lifetime was used 

to predict the effect o f the fiber properties.

Effect of the radius of the fibers

The influence of the radius o f the fibers on the lifetime of the fiber tow was 

investigated by running a series of simulations varying the radius o f the fibers from 1 to 

15 microns. The results are plotted on Figure 3.1. It can be noted here that the stress 

intensity factor (Ki) is a function o f both crack length and the applied stress as in the

where K, = Stress intensity factor

a effective ~ Effective stress acting in the bridging zone 

C= crack length.

Both the crack length and the effective stress acting in the bridging zone are 

functions of the radius o f the fibers. For low radius values, the o effeclive dominates

Equation 4, and yields a low stress intensity factor results in a stable crack stable and 

higher predicted lifetimes. But as the fiber radius was increased beyond 5 microns, the

equation:

(4)
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crack length becomes the dominant factor in determining the stress intensity factor, 

prompting the crack to grow and fail quickly. However after a certain increase in the 

radius o f the fibers this theory does not have any effect on the failure lifetimes. This 

situation resulted from the matrix being fully cracked in these cases and the creep process 

alone determined the failure lifetimes.

80 -

75 ■Q.

70 -

60 -

CD

Average Fiber Radius (Microns)

Figure 3.1. Effect of average fiber radius on the predicted lifetime.

Effect of fracture toughness

The simulation was used to predict lifetime for fracture toughness values ranging 

from 3 to 8 MPa»m'/2, keeping all the other parameters constant. The fracture toughness 

determined the stability o f the crack, and therefore, played an important role in the 

propagation of the crack. Figure 3.2 shows the predicted relationship between fracture 

toughness and creep lifetime. Failure lifetime increased with fracture toughness because 

the material had higher resistance to crack propagation. As the fracture toughness was 

increased in the fiber tow, the crack took longer to propagate across the fiber array. The 

simulation also predicted that the increase in the fracture toughness led to an increase in 

the crack incubation period and a decrease in the crack growth rate [15].
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Figure 3.2. Effect of fracture toughness on the predicted lifetime.

Effect of Characteristic Fiber Strength

Characteristic strength is a measure of the average fiber strength, and is one o f the 

parameters used to generate a Weibull distribution of fiber strengths. The effect o f the 

characteristic fiber strength on the life o f the fiber tow has been investigated. Figure 3.3 

shows the plot o f characteristic fiber strength as a function o f failure lifetime. From the 

plot it can be concluded that as characteristic strength o f the fibers was increased the 

failure lifetimes increase nonlinearly.

Weibull Modulus of Fiber Strength:

Weibull modulus is a parameter used to produce the Weibull distribution o f fiber 

strengths and is inversely proportional to the width of the strength distribution. Varying 

the Weibull modulus yielded a similar nonlinear behavior (Figure 3.4) as the 

characteristic fiber strength. However it can be concluded from the equations that fit the 

behavior of both properties that the effect of Weibull modulus on failure times is less 

pronounced than that o f characteristic fiber strength.

31

R e p ro d u c e d  with p erm iss ion  of th e  copyright ow ner.  F u r the r  reproduction  prohibited without perm iss ion .



www.manaraa.com

120 - r -

aj 100 -

80 -

tf=38.92cto 118- »R2=0.90

20  -

0.5 1 1.5 2 2.5
Characteristic Fiber Strength (GPa)

3.5

Figure 3.3. Effect of fiber characteristic trength on the predicted lifetime.
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Figure 3.4. Effect of the Weibull modulus of fiber strength on predicted lifetime.

Effect of Volume Fraction of Fibers

The influence of the volume fraction of the composite on the failure lifetime was 

investigated using the Monte Carlo simulation. The simulation predicted an increase in
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the lifetime with the increase in the volume o f the fibers present in the matrix (Figure 

3.5). The fiber tow failed without even cracking fully for volume fractions that were less 

than 0.3. The fiber domination region did not exist for these cases. It was also noted that 

the crack did not grow from the initial crack in the systems having a fiber volume 

fractions greater than 0.6. It can also be noted from the Figure 3.5 that an increase in the 

fiber volume fraction beyond 0.7 had little impact on the failure lifetime o f the fiber tow.

120

100  -

80 -

60 -

0.2 0.4 0.6 0.8
Volume Fraction of Fibers

Figure 3.5. Effect of volume fraction of fibers on predicted lifetime.

Effect of Elastic Modulus of Fibers

The elastic moduli o f fibers were generated from a normal distribution. The mean 

and standard deviation parameters o f the normal distribution were varied to find the 

possible influence on the creep lifetime. The mean elastic modulus o f the fibers was 

predicted to have no effect on the creep lifetime (Figure 3.6). The mean elastic modulus 

was used only in the determination o f stresses in the individual fibers [15]:
f

^  applied
\ ( E u )

J
{  v r / {  E  J

where a appiied =Applied stress on the fiber tow 

Cjj = stress in the fiber i,j
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V f = the fiber volume fraction 

E -  Average modulus o f fiber array 

E i j = modulus of the fiber i,j

i = horizonatal position o f fiber in tow

J = veritical position o f fiber in tow.

Careful consideration o f Equation 5 suggests the effect o f elastic modulus from the 

distribution is cancelled by the mean Elastic modulus present in the equation. Therefore, 

the mean elastic modulus would be expected to have no effect on the creep lifetime.

Q.

53  -

•
S> 51

100 150 200  250  300  350  400

Average Elastic Modulus (GPa)

Figure 3.6. Effect of average elastic modulus of fibers on predicted lifetime.

However the standard deviation in the distribution o f elastic modulus of the fibers 

appeared to have a mild effect on the lifetime o f the tow. The results on the effect o f the 

standard deviation o f the elastic modus on the lifetime are plotted in Figure 3.7. The 

spread in the Elastic modulus o f the individual fibers was increased as the standard 

deviation was increased. This increase in the standard deviation caused some o f the fibers 

to be highly loaded leading to their early failure and lower lifetimes. It can be concluded 

that the minimization o f the standard deviation of the elastic modulus o f the fibers can 

increase failure lifetime.
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Figure 3.7. Effect of standard deviation of elastic modulus on predicted lifetime. 

Conclusions

The influence o f the fiber characteristics on the failure lifetimes o f a SiC fiber tow 

was predicted using a Monte Carlo simulation. A creep model with a creep rate modeled 

as a power law with published values for the power law parameters was used. The 

simulation examined the effects fiber radii, elastic moduli, and volume fraction and fiber 

strength on the creep life o f the fiber tow. An increase in the creep life is predicted for a 

decrease in the fiber radius below 4 microns. The fiber radius seemed to have little effect 

on the creep life for radius values that are more than 6 microns. The simulation also 

predicted an increase in the crack incubation period and decrease in the crack growth rate 

for an increase in the fracture toughness. An increase in the characteristic strength or the 

Weibull modulus o f the strength o f the fibers was expected to increase the creep life of 

the fiber tow with the former having more influence than the latter. Increasing the fiber 

content in the matrix led to an increase in the lifetime. It was also observed that 

controlling the fiber content in the tow could control the crack growth and crack 

incubation. Minimizing the spread in the values o f the elastic modus o f the fibers may 

lead to an increase in the lifetime o f the fiber tow. The failure lifetime o f a fiber 

reinforced ceramic matrix composite can be controlled by carefully choosing its fiber 

characteristics.
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% MAIN.m
% THIS IS THE MAIN PROGARAM FOR RUNNING THE SIMULATION.
% ------------------------------------------------------------------------------------------------------------
% THE VARIABLES USED IN THIS PROGRAM ARE 
% s= strength=strength of the fibers.
% c=modulus= modulus of fibers from rnd generator.
% d=rate= reaction rate 
% e=fdist=force distribution exponents 
% tstep=row matrix used for plotting timestep.
% Exp=mXn matrix which has 1 if the fiber is not broken and has zero if 
that fiber is broken
% Exp is used in the percentbroc function in calculating the percentage 
of broken fiber.
% perbroc=row matrix used for plotting the percentage of broken fiber 
at each step.
% sigaap=the level of nominal stress here - assuming non-load bearing 
matrix
% avgmod=Average modulus of the fibers
% whenbroke= It is the array which gives the timestep of failure of 
each fiber.
% whenbroketemp=mxn matrix indicating the timestep at failure.
% sfiber is the array of the applied stress on the individual fibers 
% tempradius=This is the (dynamic)radius of the fibers in the program 
% r=radius= radius of the fibers from random generator

%clear previously stored results 
clear all

% this part returns with the input variables, 
global p Vf sigapp KIc Y avgmod m n appldstress 
variables

%variable parameters are set in RAND_GENE program
%you can also use the random distributions from the previous experiment 
yesorno=input(' Do you want to use the random distribution from the 
previous run:type(y/n)\n','s '); 
if yesorno=='y'

VAR=wklread('distribution 1); 
radius = V A R (:,1:41);
Strength = V A R (:,42:82); 
modulus=VAR(:,83:123); 
rate = V A R (:,124:164); 
fdist = V A R (:,165:205); 
tempradius = radius; 

else
RAND_GENE;
%store the results from RAND_GENE in the appropriate arrays.
radius = r;
strength = s;
modulus = c ;
rate = d;
fdist = e;
tempradius = r;
% storing the results for use in later simulations, 
wklwrite('distribution' , [r  s c d e] ) ;

end
% = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
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%Initialize an array to hold the timstep when each fiber broke 
%the value of -1 is a flag to show that no timestep has been 
%stored in the array position yet. 
for i=l:m 

for j=l:n
whenbroke(i ,j )=-1;

end
end
%Determine the column where the crack tip sets 
q = round(p*n/l00);
%print the initial crack position
fprintf('\nThe initial crack length is:%d\n',q);
% C is the crack tip line
% build a 12 X 1 matrix of 5 to identify the crack tip 
C = ones(m,1).*5;
% represents the whole material matrix subjected to 
% a userdefined crack tip 
% MAT is m X n+1 matrix
% sets the initial fiber state to 1 and adds the col of 5's
% to identify the crack tip
MAT = [ones(m,q),C,ones(m,n-q)];
% Now taking care- of exposure matrix 
% 1-fiber intact and 0- broben fiber 
% Exp is a m X n matrix
% Exp array identifies all fibers as 1 (reacting or not?)
Exp = [ones(m,q),ones(m,n-q)];
% ==============assigning stress to fibers and matrix===============
% sfiber is the array of the applied stress on the individual fibers 
% avgmod=Average modulus of the fibers is set as 145e9 Pa.
% sigapp=the level of nominal stress here - assuming non-load bearing 
matrix
% It is assumed that matrix before the crack is non-load bearing and 
% the matrix after the crack bears the same load as the fiber.
% Hence the following code.
% Note: The matrix creep and the subsequent matrix failure are not 
taken in to account
% for the simplicity of the model. It is just made to take some load. 
smatrix=appldstress; 
for i = l:m 

for j = l:n 
if j >q

sfiber(i,j ) = (appldstress/(avgmod)).*(modulus(i,j )); 
else

sfiber(i,j) = (sigapp/(avgmod)).*(modulus(i, j ));
end

end
end
%Determine which fibers break on initial mechanical loading 
[sfiber,Exp,tempradius,whenbroketemp] =
FRACBROC_DIST(sfiber,strength,radius,tempradius,Exp,fdist,m,n,0); 
%transfer the information from whenbroketemp to whenbroke 
for i=l:m 

for j=l:n
if(whenbroke(i,j )==-1)

if(whenbroketemp(i,j )~=-l)
whenbroke(i ,j )=whenbroketemp(i ,j );

end
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end
end

end
[p] = percentbroc(Exp,m,n);
%use a subroutine to determine the stability of crack tip
%the value of q return is the new position of the crack tip after the
crack is stable.
%the variable stable is a 1 or 0 depending on stability
[q, stable,sfiber]=CRACKSTABILITY(sigapp,sfiber,tempradius,KIc,Y,C,MAT,m
,n,q,smatrix,Vf);
fprintf('\nThe stabilized initial crack length is: %d\n',q);
%initalize the iteration counters 
timestep = 1; 
tstep(l) = timestep; 
cracklen(l) = q; 
perbroc(1)=p;
% Recording fiber status at each timestep in a file, 
filename=strcat('profiles/matrixprofile',num2str(timestep)); 
wklwrite(filename,Exp);

%Code will iterate until all fibers have broken 
while(p<100.)

%increment the counter, timestep 
timestep = timestep + 1;
%determine if any fibers broke during this timestep 
[sfiber,Exp,tempradius,whenbroketemp] =

FRACBROC_DIST(sfiber,strength,radius,tempradius,Exp,fdist,m,n,timestep; 
%transfer the info from whenbroketemp to whenbroke 
for i=l:m 

for j=l:n
if(whenbroke(i,j )==-1)

if(whenbroketemp(i,j )~=-l)
whenbroke(i ,j )=whenbroketemp(i , j );

end
end

end
end
%check stability of the crack-tip 
[q,stable,sfiber] =

CRACKSTABILITY(sigapp,sfiber,tempradius,KIc,Y,C,MAT,m,n,q,smatrix,Vf);
% ------------------------------------------------------------------------------------------------------------------------
% This part will apply the creep model to the fibers.
% The result of this creeping would result in straining 
% by which the radius of the fibers are reduced ehnce more stress in 

ther fibers.
[sfiber,radius,tempradius]

=creep(sfiber,radius,tempradius,m,n,q,avgmod,timestep);
% We can also combine our creep model with envirnment reaction model 

by excuting the next step.
% [sfiber,radius,tempradius] = 

envreact(sfiber,radius,tempradius,rate,m,n,q);
% ------------------------------------------------------------------------------------------------------------------------
%calculate the percent of fibers that have broken 
[p] = percentbroc(Exp,m,n);
%store the time in an array for plottingtimestep = timestep + 1; 
tstep(timestep) = timestep;
%store the crack length in an array for plotting
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cracklen(timestep) = q;
%store the percant broken fibers in an array for plotting 
perbroc(timestep) = p;

% This part is intended to animate the process of fiber failure. 
% Recording the fiber status at each timestep. 
filename=strcat('profiles/matrixprofile',num2str(timestep)); 
wklwrite(filename,Exp);

end
%

%calculate the crach growth rate
crackrate=-l;
for i=l:timestep

if(cracklen(i)==n) 
if(crackrate==-l)

crackrate=(cracklen(i)-cracklen(1))./i;
end

end
end
% This will calculate crack length in case the tow fails before being 
fully cracked 
if(crackrate== -1)

crackrate=(cracklen(timestep)-cracklen(1))./timestep;
end
fprintf('\nCrackrate: %f\n',crackrate);

% This is the animation part of the code, 
figure(2) ; 
z = l;
while z<=timestep % reading from the files the status of fibers at 
each timestep.

y=linspace(1,12,200); 
plot(cracklen(z),y , 'b - ') 
hold on
filename=strcat('profiles/matrixprofile' ,num2str(z)); 
frame=wklread(filename);
% Converting the information into useful design, 
spy(frame);
figfilename=strcat(1 fig/profile',num2str(z), ' .jpg');
Isaveas(2,figfilename);
M (:,z)=getframe(2);%record the movie 
z=z+l; 
hold off

end

Iconvert the crack length (stored as colun number)
%into a fraction of the array length 
cracklenl=cracklen/n;
%Now plot the results 
figure(3),
plotyy(tstep,cracklenl,tstep,perbroc)
xlabel('timesteps');
ylabel('Cracklength');
title('Cracklength Vs timesteps');
fprintf('\nNumber of time steps before Failure: %d\n',timestep);
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%RAND_GENE.m
% Variation of input parameters appears to be accomplished by adjusting 
the
% parameter in the random number generator statements. 
% = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =

global m n avgrad avgmod weibstrength stdmod charstrength 
% SET THE INPUT PARAMERS FOR THE RANDOM DISTRIBUTION GENERATION HERE.

% Average radius for the radius distribution is set in variables 
function.
% Standard deviation(radius) = 1.3 microns. 
stdrad=l.3e-06;
% characteristic fiber strength = 1.1 GPa and Weibull Mod = 3.6 
%charstrength=l.le+09;%IT IS FIXED IN VARIABLES PROGRAM 
%weibstrength=3.6;%IT IS FIXED IN VARIABLES PROGRAM 
% average modulus = 145 GPa and standard deviation = 3 0 GPa 
%avgmod=145e09; %IT IS FIXED IN VARIABLES PROGRAM 
%Stdmod=3 0e0 9 ;%IT IS FIXED IN VARIABLES PROGRAM 
% min expected reaction rate=- 10% and max expected rate=+ 10% 
minrate=0.9; 
maxrate=l.1;
% force distribution exponent n = 2 
% min expected=-l and max expected=+l 
minexpnt=l; 
maxexpnt=3;
% = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =

% The following set of loops is large to permit regeneration as 
necessary
% Generation of fiber radii
COUNT11 = 0;
while (COUNT11 < 100)

rad = normrnd(avgrad,stdrad,m,n); 
radl = rad;
probchl = chi_norm(radl);%this function perfoms the chi-norm test 

and report about randomness of radii
probksl = kstest(radl,'norml');%this function perfoms the k-test 

test and report about randomness of radii 
if ((probchl >0.05) & (probksl > 0.05))

%store passing results in array a
r = rad;
break;

end
COUNT11 = COUNT11 + 1; 
if C0UNT11==99 

r=rad;
end

end

% Generation of fiber strengths 
COUNT2 2 = 0;
While (COUNT22 < 100)

% note transformation from strength parameters to stat parameters 
str = weibrnd((( charstrength)A (-weibstrength)),weibstrength,m,n); 
strl = str;

45

R e p ro d u c e d  with p erm iss ion  of th e  copyright ow ner.  F u r the r  reproduction  prohibited without perm iss ion .



www.manaraa.com

probch2 = chi_norm(strl);%this function performs the chi-norm test 
and report about randomness of strength

probks2 = kstest(strl,'weib');%this function performs the k-test 
test and report about randomness of radii

corl = cortest(r,strl); %this function performs the cortest test and 
report about compatibility? of radii and strength 

% 95% confidence is taken
if ((probchl > 0.05) & (probksl > 0.05) & (corl > 0.05))

% store passing results in array b
s = str;
break;

end
COUNT22 = COUNT22 + 1; 
if COUNT22==99 

s = str; 
end

end
% Generation of fiber moduli
COUNT33 = 0;
while (COUNT33 < 100)

mod = normrnd(avgmod,stdmod,m,n); 
modi = mod;
probch3 = chi_norm(modi); 
probks3 = kstest(modi,'norm2'); 
cor2 = cortest(s,modi); 
cor3 = cortest(modi,r);
if ((probch3>0.05) & (probks3>0.05) & (cor2>0.05) & (cor3>0.05))

% store passing results in array c
c = mod;
break;

end
COUNT3 3 = COUNT33 + 1; 
if COUNT33 = = 99

fprintf('Normal distribution cannot be made 1);
c=mod;
end

end
% Generation of reaction rates of the individual fibers
COUNT44 = 0;
while (C0UNT44 < 100)

rat = unifrnd( minrate,maxrate,m,n); 
rati = rat;
probch4 = chi_unif(rati);
probks4 = kstest(rati,'unifl');
if ( (probch4>0.05) & (probks4>0.05) )

% store passing results in array d
d = rat;
break;

end
C0UNT44 = C0UNT44 + 1;

end
% Generation of force distribution exponents of the individual fibers
COUNT55 = 0;
while (C0UNT55 < 100)

dis = unifrnd(minexpnt,maxexpnt,m,n); 
disl = dis;
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probch5 = chi_unif(disl);
probks5 = kstest(disl, 1unif2 1);
if ( (probch5>0.05) & (probks5>0.05) )

% store passing results in array e
e = dis;
break;

end
COUNT55 = COUNT55 + 1 ;

end
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^ * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

% variables.m
% YOU CAN INPUT THE VARIABLES FOR THE ENTIRE SIMULATION HERE, 
global p Vf sigapp KIc Y avgmod m n matstrength appldstress convfctr 
avgrad stdmod charstrength weibstrength strsexponent

%The array size is set here (n = num. of columns; m = num. of rows) 
m = 12 ; 
n = 41;
% ----------------------------------------------------------------------------------------------------------
%Set the crack length as a percent of the number of columns 
% Default value of p is 5 %
p = 5;%input('what percentage of the total length');

%Vf is the volume fraction equal to 40%
Vf = 0.4;
% ----------------------------------------------------------------------------------------------------------
% The level of nominal stress
% Set at a default value of appldstress=l.le+08 
appldstress = l .le+08;

% Load carried by each fiber assuming non-load bearing matrix 
sigapp = (appldstress/Vf);

% The fracture toughness.
% Default value is KIc = (4e+0 6)
KIc = (4e+06);
% The crack shape parameter.
Y = piA0 .5;

% average modulus and standard deviation of the fibers. 
% Default values are avgmod=145e9 stdmod=30e09; 
avgmod=145e9; 
stdmod=30e09;

% compensation factor from real time to timesteps 
convfctr=5e6; % i.e convfctr*lsec=l timestep set at 5e6

% Strength of the matrix.
% Default value is matstrength= 145e9 
matstrength= 145e9;
g. _   _       _            _

% average radius of the fibers.
% This will be used by RAND_GENE,CRACKSTABILITY functions.
% Default value is avgrad=6.9e-06; 
avgrad=6.9e-06;
% ------------------------------------------------------------------------------------------------------------
% characteristic fiber strength = 1.1 GPa and Weibull Mod = 3.6 
charstrength=l.le+09; 
weibstrength=3.6;

% Stress Exponent in the power law used to calculate steady state creep 
rate
% Default value of strsexponent=n=2 
strsexponent=2 ;
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% chijnorm.m
function prob = chi_norm(radl)

%This function performs a chi-sqaured test of significance in 
^comparison of a set of numbers to an expected uniform distribution

%The following variables must be passed to this function 
%
% x = array that contains the data to be compared to a
distribution
% nbins = the number of bins to divided the data into
%
%The following variables will be returned from this function
%
% chisq = the chi-squared statistic
% prob = the probability of significance
% = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =

%Detemine the number of data points 
[a,b]=size(radl);
% i think a,b are used twicw or thrice this may be changed for good
% ..........................................................................................................................................................
numdata = a*b;
%Sort the matrix into a single column matrix 
x = [] ; 
for i=l:b,

x = [x;radl(:,i) ] ;
end
%number of bins the data is being divided 
nbins = 10;
%Determine the maximum data point in the data set 
maxdata=max(x);
%Determine the minimum data point in the data set 
mindata=min(x);
%Devlop and array that defines the bin maximums 
interval = (maxdata-mindata)/nbins; 
for i = 1:nbins,

binmax(i)=mindata+i*interval;
end

%Count the number of points in each bin 
for a=l:nbins,

datacount(a)=0; 
normbin(a)=0;

end

for i=l:numdata, 
for j=l:nbins, 

if j==l
if x(i)<=binmax(j)

datacount(j)=datacount(j)+1;
end

else
if x(i)<=binmax(j )

if x(i)>binmax(j -1)
datacount(j)=datacount(j )+1;
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end
end

end
end

end
%Develop a Guassian approximation of the expected distribution 
normamount=normcdf(binmax,mean(x),std(x));
%count the expected number in each bin for a normal distribution 
normbin(1)=numdata.* (normamount(1)); 
for i=2:nbins,

normbin(i)=numdata.* (normamount(i)-normamount(i-1));
end
%Devlop an array that holds the incremental chi-sqaure sums 
chiterms=((datacount-(normbin)).^2)./(normbin);
%Now sum to get the chi-square statistic 
chisq=sum(chiterms);
%Detex-mine the signicance of the above chi-square term 
prob=chi2cdf(chisq,nbins-1);
%hist(datacount, 10) ;
%xlabel('Magnitude of Observations');
%ylabel('Number of Observations');
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% * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

%chi_unif.m
(X     _  __ _  ________ _____•3------------------- —----------------------- -------------------------------------------------
%This function performs a chi-sqaured test of significance in 
%comparison of a set of numbers to an expected uniform distribution 
% = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =

function probch = chi_unif(x)
%The following variables must be passed to this function
%
% x = array that contains the data to be compared to a distribution
% nbins = the number of bins to divided the data into
%
%The following variables will be returned from this function 
%
% chisq = the chi-squared statistic
% prob = the probability of significance

%Detemine the number of data points 
nbins = 10;
[a,b]=size(x); 
numdata = a*b;
%Determine the maximum data point in the data set 
maxdata=max(max(x));
%Determine the minimum data point in the data, set 
mindata=min(min(x));
%Devlop and array that defines the bin maximums 
interval=(maxdata-mindata)/nbins; 
for i=l:nbins,

binmax(i)=mindata+i*interval;
end
%Count the number of points in each bin 
for a = 1:nbins, 

datacount(a)=0;
end

for i=l:numdata, 
for j=l:nbins, 

if j==l
if x(i)<=binmax(j)

datacount(j)=datacount(j)+1;
end

else
if x(i)<=binmax(j)

if x(i)>binmax(j -1)
datacount(j)=datacount(j )+1;

end
end

end
end

end

%Develop an array that holds the incremental chi-square sums 
chiterms= ( (datacount - (numdata . /nbins) ) . * ' 2 ) . / (numdata. /nbins) ;

%Now sum to get the chi-square statistic 
chisq=sum(chiterms);
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%Determine the significance of the above chi-square term 
probch=chi2cdf(chisq,nbins-1);
%hist(datacount);
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% * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

%chi_weib.m
% = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =

%This function performs a chi-sqaured test of significance in 
%comparison of a set of numbers to an expected uniform distribution

function prob = chi_weib(y)
%The following variables must be passed to this function
%
% x = single column array that contains the data to be compared to
a distribution
% nbins = the number of bins to divided the data into
%
%The following variables will be returned from this function 
%
% chisq = the chi-squared statistic
% prob = the probability of significance

%Detemine the number of data points 
[a,b]=size(y); 
numdata = a*b;

%Sort the matrix into a single column matrix
X = [] ;
for i=l:b,

x = [x;y( : , i) ] ;
end

%number of bins the data is being divided 
nbins = 10;

%Determine the maximum data point in the data set 
maxdata=max(x);

^Determine the minimum data point in the data set 
mindata=min(x);

%Devlop and array that defines the bin maximums 
interval=(maxdata-mindata)/nbins; 
for i=l:nbins,

binmax(i)=mindata+i*interval;
end

%Count the number of points in each bin 
for a=l:nbins,

da ta c o un t  (a )= 0;
weibbin(a)=0;

end
for i=l:numdata, 

for j=l:nbins, 
if j==l

if x(i)<=binmax(j)
datacount(j)=datacount(j )+1;

end

53

R e p ro d u c e d  with p erm iss ion  of th e  copyright ow ner.  F u r the r  reproduction  prohibited without perm iss ion .



www.manaraa.com

else
if x(i)<=binmax(j )

if x(i)>binmax(j -1)
datacount(j )=datacount(j )+1;

end
end

end
end

end

%Develop a Weibull approximation of the expected distribution 
weibamount=weibcdf(binmax,1.le+09A3 .6,3.6);

%Count the expected number in each bin for a Weibull distribution 
weibbin(l)=numdata.*(weibamount(1)); 
for i=2:nbins,

weibbin(i)=numdata.* (weibamount(i)-weibamount(i-1));
end

%Develop an array that holds the incremental chi-square sums 
chiterms=((datacount-(weibbin)) .A2 ) ./(weibbin);

%Now sum to get the chi-square statistic 
chisq=sum(chiterms);

%Determine the significance of the above chi-square term 
prob=chi2cdf(chisq,nbins-1);
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% * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
%cortest.m
f u n c t i o n  probco = c o r t e s t ( x , y )
% Two sets of random numbers 
[a b] = s i z e ( x ) ; 
n = a*b;

% Calculation of correlation coefficient
xd = mean(mean(x) ) ;
yd = mean(mean(y)) ;
x i  = x - xd;
y i  = y - yd;
num = sum(sum(xi . * y i ) ) ;
den = s q r t ( s u m ( s u m ( x i . A2 )) )  * s q r t ( s u m ( s u m ( y i . A2 ) ) ) ;  
coef  = num/den;

% Fisher's transformation 
z = 0 . 5 * l o g ( (1+coef ) / ( 1 - c o e f ) ) ;

% Find the significance level
probco = e r f c ( a b s ( z * s q r t ( n - 3 ) ) / s q r t ( 2 ) ) ;
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% * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

Ikstest.m
function probks = kstest(M,name)
%Generate the random numbers 
[m,n] = size(M); 
numdata = m*n;

%The random numbers generated above are arranged in a single column 
%matrix b. This makes easy to sort the whole array of random numbers, 
b = [] ; 
for i=l:n,

b = [b;M(:,i)];
end

%sorting of random numbers in ascending order 
x = sort(b);

%calculate the cumulative distribution of the sorted array 
if strcmp(name, 1weib') | s t r c m p ( n a m e w e i b u l l ')

y  = weibcdf(x,1.le+09A3 .6,3.6); 
elseif strcmp(name, 'norml') | strcmp(name, 1 normal1 1)

y  = normcdf(x,6.9e-0o,1.3e-06); 
elseif strcmp(name,'norm2') | strcmp(name,'normal2')

y  = normcdf(x,145e+09,30e+09); 
elseif strcmp(name,'unif1') | strcmp(name,'uniform1)

y  = unifcdf(x,.9,1.1); 
elseif strcmp(name,'unif2') | strcmp(name,'uniform')

y  = unifcdf(x,1,3); 
else

error('This function doesnot support this distribution');
end

%z is the matrix that has probability of occurence of each random 
%number generated 
z l  = [] ;
for i=l:numdata,

zl(i) = i/numdata;
end

z = z 1' ;

%Calculation of the K-S statistic "D" 
d = abs(z-y);
D = max(d);

%Finding the probability "Qks"
en = sqrt(numdata);
alam = (en + 0.12 + (0.11/en))*D;

for j = 1:2:100,
Qksl(j) = 2*exp(-2*(jA2)* (alamA2));

end

for k = 2 : 2 :100,
Qks2(k) = -2*exp(-2*(kA2)* (alamA2));

end
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probks = sum(Qks2) + sum(Qksl);
%plot(x,y,x,z);
%ylabel(1 Cumulative probability distribution'); 
%xlabel(1x ');
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%CRACKSTABILITY.m
% Function CRACKSTABILITY is used to check the crack stability 
function [q,stable,sfiber] =
CRACKSTABILITY(sigapp,sfiber,tempradius,KIc,Y,C,MAT,m,n,q,smatrix,Vf)
% avgrad=average radius of the fibers(can be set in variables program) 
global avgrad 
if ( q > n ) 

q = n;
fprintf('The matrix is fully cracked');
MAT = [ones(m,q),C,ones(m,n-q)]; 

else
oldcrklen=q;
% Nov/ the task is to find the stability of the crack tip 
%The effective area of a fiber is a square element 4(avg. r) by 

4 ( a v g . r )

%Calculate the area of the bridging zone 
area = q*m*((4*avgrad)^2);
%Calculate the fiber cross sectional area for each fiber in the 

bridging zone
areafib = p i .*( tempradius(:,1:q) . * 2 );
%Calculate the TOTAL stress in the bridging zone (TOTAL of all fibe 
%forces divided by the area of the bridging zone 
sigfib = (sum(sum( sfiber(:,1:q).*areafib )))/area;
%Superimpose stresses to determine the effect of bridging zone 
sigeff = sigapp - sigfib;
% To find the crack length 
cracklength = (q)* (4*avgrad);
% Finding the effective stress intensity and comparing it to 
% critical stress intensity factor 
Kleff = Y*sigeff*sqrt(pi*cracklength); 
if (Kleff < KIc)

% fprintf('The crack is stable'); 
stable = 1; 

else
stable = 0; 
while (Kleff >= KIc) 

q=q+l;
if ( q > n ) 

q = n;
% fprintf('The matrix is fully cracked'); 
break;

end
area = q*m*((4*avgrad)x2); 
sigfib =

(sum(sum(sfiber(:,l:q).*(pi.*tempradius(:,1:q)))))/area; 
sigeff = sigapp - sigfib; 
cracklength = (q)* (4*avgrad);
Kleff = Y*sigeff*sqrt(pi*cracklength); 
if (Kleff >= KIc)

% fprintf('The crack is made stable');
MAT = [ones(m,q),C,ones(m,n-q)]; 
break;

end
end
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end
end

% Here we need to redistribute the force taken by the matrix, which has 
freshly cracked.
sfiber(:,oldcrklen+1:q)=sfiber(:,oldcrklen+1:q)+smatrix*(1-Vf)/Vf;
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%FRACBROC_DIST.m
function [sfiber,Exp,tempradius,whenbroketemp] =
FRACBROC_DIST(sfiber,strength,radius,tempradius,Exp, fdist,m,n,timestep)
% This part of the program calculates the index of the fibers which are 
broken
% and then redistributes the load 
% = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =

for b = l:n 
for a = l:m

whenbroketemp(a,b)=-1; 
if (sfiber (a,b)~=0)

if (sfiber(a,b) >= strength(a,b)) 
whenbroketemp(a,b)=timestep;
%fprintf('The index of the fiber failed is (%d,%d)\n',a,b); 
%fprintf('\n');
% This function call will redistribute the force previously 

taken by broken fiber.
[sfiber] =

fordist(sfiber,tempradius,fdist,m,n,a,b,timestep,strength);
Exp(a,b) = 0; % for records of the broken fiber 
sfiber(a,b) = 0; % ditto 
tempradius(a,b) = 0; %ditto

end
end

end
% fprintf('\n');

end
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%fiberdistance.m
function d = fiberdistance(il,j1,i2,j2)
%d is the distance between the two fibers @ (il,jl) and (i 2,j 2) 
d = sqrt( ((j 2-j1)*2) + ( (i2-il)"2) );
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% * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

Ifordist.m 
function [sfiber] =
fordist(sfiber,tempradius,fdist,m,n(a,b,timestep,strength)
% This code redistributes the force of the broken fiber to all 
% the remaining fibers according to the force-distribution law
% ------------------------------------------------------------------------------------------------------
% VARIABLES USED in this function:
% Fbroken=force that has to be redistributed from the broken fibre.
% dist= fiber distance from the broken fibre.
% fdist=force distribution exponents(randomly generated)
% distfactor= force distribution factor ( proprtional to the load taken 
by each fibre)
% denom= It is the sum of distribution factors.

Fbroken = sfiber(a,b).* (pi*(tempradius(a,b)A2));
%Calculate the distanceAn matrix 
for i=l:m 

for j=l:n
if(sfiber(i,j)-= 0.0)

dist=fiberdistance(a,b,i,j); 
if i==a &j==b

distfactor(i,j)=0; 
else

distfactor(i,j)=l/dist.Afdist(a,b);
end

else
distfactor(i,j)=0;

end
end

end
%Calculate the sum of the inverse distance matrix 
denom=sum(sum(distfactor));
Fij =zeros(m,n) ;
% Fij is the force being distributed to each fiber 
for i=l:m

if denom ==0.0
fprintf('\nAll the fibres are broken at %d\n',timestep) 
break;

end

for j=l:n
Fij (i,j)=Fbroken.*(distfactor(i,j)/denom);

end
end

% Final stresses on the individual fibers after the force from 
% broken fiber is being redistributed, 
for i=l:m 

for j =1:n
if(sfiber(i,j)~ = 0)

if (tempradius( i , j)>le-20)

sfiber(i,j)=sfiber (i,j) +
(Fij(i,j)/(pi*tempradius(i,j)))*(1/tempradius(i,j)); 

end
end
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end
end
sfiber(a,b) = 0;
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Ipercentbroc.m
function p = percentbroc(Exp,m,n)
% This function calculates the percentage of fibers broken at a 
particular 
% timestep
num = (m*n)- (sum(sum(Exp))); 
den = m*n; 
p = (num/den)*100;
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%creep.m
function [sfiber,radius,tempradius]
=creep(sfiber,radius,tempradius,m,n,q,avgmod,timestep)
% This function m-file will apply creep to all the fibres 
% convfctr= compensation factor from real time to timesteps

global sigapp Vf appldstress convfctr strsexponent
%  -----------------------------------------------------
% we will calculate the PRIMARY CREEP RATE here.
% It is given by de/dt(primary)=constl*stress^n*time *m.
% Parameters taken from J.W.Holmes paper in j of matl sci,1992 vol2 7.
% valid in a range of 70-110 MPa.
constl=7.2e-15; 
expntl=l; 
expnt2=-0 . 6 6 1 ;

pstrainrate=(constl*appldstressAexpntl*(timestep*convfctr)^expnt2)*conv 
f ctr;
% ----------------------------------------------------------------------------------------------------------
% Calculating the STEADY CREEP STRAIN RATE by using the power law.
% steadystrainrate=const2*stressAn
% Parameters taken from J.W.Holmes paper in j of matl sci,1992 vol27.
% valid in a range of 70-110 MPa.
const2=2.83 3e-25;
%strsexponent=2;% this value is set from the varibles program 
sstrainrate=const2*(appldstress)Astrsexponent*convfctr;
% Total creep strain rate. 
strainrate=pstrainrate+sstrainrate;

% creeps all the fibres, 
newsfiber=zeros(m,n); 
for cl=l:n 

for c2=l:m
% ****here matrix creep may be accounted.********* 
if tempradius(c2,cl)~=0.0

areafin=(pi*tempradius(c2,cl).*2)/(strainrate+1);

newsfiber(c2,cl)=sfiber(c2,cl)* (pi*tempradius(c2,cl)^2)/areafin;
% Setting the new radius, 
tempradius(c2,cl)=sqrt(areafin/ (pi)) ;

end
end

end
sfiber = newsfiber;
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%convAnalysis.m
% This program is intended to generate the required form of the results 
% by running the adopted "main" simulation from the "baremain.m".
% ******* *Te s t i n g  t h e  c o n v e r g e n c e  o f  l i f e t i m e s ******
% **** PLOTTING LIFETIME (VS) NO OF SIMULATIONS.
-g = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = r r  = = = = = = = = = = = = = =

stepno=[1 2 3 5 7 10 15 20 25 35 50 75 100 150];% i ntended no of 
simulations in each RUN(a total of 498 simulations). 
cumtimestep=zeros(1,length(stepno));% Stores sum of all failure 
timestep for each run
avtimestep=zeros(1,length(stepno));% Stores average failure timestep 
for each run
stdtimestep=zeros(1,length(stepno));% Stores standard deviation of 
timesteps for each run
ftimestep=zeros(length(stepno),max(stepno));% Stores no of timesteps of 
each simulation 
for otrcnt=l:length(stepno) 

for inrcnt=l:stepno(otrcnt)
fprintf('RUN %d simulation %d1,otrcnt,inrcnt)
timestep=bareMain;% "main" program without animation and other 

non essential things.
ftimestep(otrcnt,inrcnt)=timestep; % failure timestep recording 

for each simulation.
cumtimestep(1,otrcnt)=cumtimestep(1,otrcnt)+timestep;

end
% storing the data.
stdtimestep(1,otrcnt)=std(ftimestep(otrcnt,1:stepno(otrcnt))); 
avtimestep(1,otrcnt)=cumtimestep(1,otrcnt)/stepno(1,otrcnt); 
fileid=strcat('conAnalysis\RUN',num2str(otrcnt),'.t x t '); 
dlmwrite (f ileid, [stdtimestep (1, otrcnt) ' ,-avtimestep (1, otrcnt) ']); 
fileid2 = strcat('conAnalysis\RUN1,num2str(otrcnt) , 'failure.tx t '); 
dlmwrite(fileid2,ftimestep(otrcnt,1:stepno(otrcnt)));

end
dlmwrite('conAnalysis\FAILURETIMES.txt',ftimestep); 
dlmwrite('conAnalysis\RESULTS.txt1, [stdtimestep;avtimestep]); 
figure(10 0)
errorbar(stepno,avtimestep,stdtimestep); 
xlabel('Number of simulations ran'); 
ylabel(1 Average life time (in Time Steps) '); 
title('LIFETIME (VS) NO OF SIMULATIONS') 
figfilename=strcat('conAnalysis.jpg'); 
saveas(100,figfilename); 
stdtimestep 
avtimestep
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% * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

%sim_Vf.m
% This program is intended to generate the required form of the results 
% by running the adopted "main" simulation from the "baremain.m".
% ********TESTING the eff ect of fiber vo l u m e fra ctio n o n the life
TIME* *****
% **** PLOTTING LIFETIME (VS) FIBER VOLUME FRACTION.

global Vf
% values of fiber average modulus in GPa at which simulations are run 
Volume_fraction=[.1 .2 .3 .4 .5 .6 .7 .8 .9];
ftimestep=zeros(50,length(Volume_fraction));% matrix to record the 
timestep at failure, 
for i=l:length(Volume_fraction) 

for j = 1:50
fprintf('Modulus %f RUN %d',Volume_fraction(i),j);

Vf= Volume_fraction(l,i);
[timestep,tstep,cracklenl,perbroc]=baremain; % "main" program 

without animation and other non essential things, 
ftimestep(j ,i)=timestep;% record

fileid=strcat('results/Vf/Results_at',num2str(Volume_fraction(i)),'run_ 
',num2str(j),1.txt');

dlmwrite(fileid, [tstep' cracklenl' perbroc']);% write the 
results in files for safety, 

end

fileidO=strcat('results/Vf/failure_at',num2str(Volume_fraction(i)),'.tx 
t' ) ;

dlmwrite(fileidO,ftimestep(:,i));% write the results in files for 
safety. 
end
fileidl=strcat('results/Vf/failureData(Vf).txt');
dlmwrite(fileidl,ftimestep);%write the results in files for safety.
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